Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Cell Rep ; 43(4): 114057, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38583149

Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury, collectively referred to as nociplastic pain, are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitters, we demonstrate that activation of Calca neurons is necessary for the manifestation and maintenance of chronic pain. Additionally, by directly stimulating Calca neurons, we demonstrate that Calca neuron activity is sufficient to drive nociplasticity. Aversive stimuli of multiple sensory modalities, such as exposure to nitroglycerin, cisplatin, or lithium chloride, can drive nociplasticity in a Calca-neuron-dependent manner. Aversive events drive nociplasticity in Calca neurons in the form of increased activity and excitability; however, neuroplasticity also appears to occur in downstream circuitry.


Neurons , Parabrachial Nucleus , Animals , Parabrachial Nucleus/physiology , Parabrachial Nucleus/drug effects , Neurons/metabolism , Neurons/drug effects , Mice , Neuronal Plasticity/physiology , Male , Mice, Inbred C57BL
2.
bioRxiv ; 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38464066

Long-term sustained pain in the absence of acute physical injury is a prominent feature of chronic pain conditions. While neurons responding to noxious stimuli have been identified, understanding the signals that persist without ongoing painful stimuli remains a challenge. Using an ethological approach based on the prioritization of adaptive survival behaviors, we determined that neuropeptide Y (NPY) signaling from multiple sources converges on parabrachial neurons expressing the NPY Y1 receptor to reduce sustained pain responses. Neural activity recordings and computational modeling demonstrate that activity in Y1R parabrachial neurons is elevated following injury, predicts functional coping behavior, and is inhibited by competing survival needs. Taken together, our findings suggest that parabrachial Y1 receptor-expressing neurons are a critical hub for endogenous analgesic pathways that suppress sustained pain states.

4.
Pain ; 165(4): 866-883, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37862053

ABSTRACT: The voltage-gated sodium channel Na V 1.7 is an essential component of human pain signaling. Changes in Na V 1.7 trafficking are considered critical in the development of neuropathic pain. SUMOylation of collapsin response mediator protein 2 (CRMP2) regulates the membrane trafficking and function of Na V 1.7. Enhanced CRMP2 SUMOylation in neuropathic pain correlates with increased Na V 1.7 activity. Pharmacological and genetic interventions that interfere with CRMP2 SUMOylation in rodents with neuropathic pain have been shown to reverse mechanical allodynia. Sentrin or SUMO-specific proteases (SENPs) are vital for balancing SUMOylation and deSUMOylation of substrates. Overexpression of SENP1 and/or SENP2 in CRMP2-expressing cells results in increased deSUMOylation and decreased membrane expression and currents of Na V 1.7. Although SENP1 is present in the spinal cord and dorsal root ganglia, its role in regulating Na V 1.7 function and pain is not known. We hypothesized that favoring SENP1 expression can enhance CRMP2 deSUMOylation to modulate Na V 1.7 channels. In this study, we used a clustered regularly interspaced short palindromic repeats activation (CRISPRa) SENP1 lentivirus to overexpress SENP1 in dorsal root ganglia neurons. We found that SENP1 lentivirus reduced CRMP2 SUMOylation, Na V 1.7-CRMP2 interaction, and Na V 1.7 membrane expression. SENP1 overexpression decreased Na V 1.7 currents through clathrin-mediated endocytosis, directly linked to CRMP2 deSUMOylation. Moreover, enhancing SENP1 expression did not affect the activity of TRPV1 channels or voltage-gated calcium and potassium channels. Intrathecal injection of CRISPRa SENP1 lentivirus reversed mechanical allodynia in male and female rats with spinal nerve injury. These results provide evidence that the pain-regulating effects of SENP1 overexpression involve, in part, the modulation of Na V 1.7 channels through the indirect mechanism of CRMP2 deSUMOylation.


Hyperalgesia , Neuralgia , Rats , Male , Female , Humans , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Up-Regulation , Rats, Sprague-Dawley , Neuralgia/genetics , Spinal Nerves , Ganglia, Spinal , Cysteine Endopeptidases/genetics
5.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37972067

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Chronic Pain , Peptidomimetics , Rats , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Rats, Sprague-Dawley , Peptidomimetics/pharmacology , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Sensory Receptor Cells/metabolism , Ganglia, Spinal/metabolism
6.
bioRxiv ; 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37961621

Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitter or directly stimulating them we demonstrate that activation of Calca neurons is both necessary for the manifestation of chronic pain after nerve ligation and is sufficient to drive nociplasticity in wild-type mice. Aversive stimuli such as exposure to nitroglycerin, cisplatin, or LiCl can drive nociplasticity in a Calca-neuron-dependent manner. Calcium fluorescence imaging reveals that nitroglycerin activates PBN Calca neurons and potentiates their responses to mechanical stimulation. The activity and excitability of Calca neurons increased for several days after aversive events, but prolonged nociplasticity likely occurs in downstream circuitry.

7.
JCI Insight ; 8(22)2023 Nov 22.
Article En | MEDLINE | ID: mdl-37824208

Neuropeptide Y targets the Y1 receptor (Y1) in the spinal dorsal horn (DH) to produce endogenous and exogenous analgesia. DH interneurons that express Y1 (Y1-INs; encoded by Npy1r) are necessary and sufficient for neuropathic hypersensitivity after peripheral nerve injury. However, as Y1-INs are heterogenous in composition in terms of morphology, neurophysiological characteristics, and gene expression, we hypothesized that a more precisely defined subpopulation mediates neuropathic hypersensitivity. Using fluorescence in situ hybridization, we found that Y1-INs segregate into 3 largely nonoverlapping subpopulations defined by the coexpression of Npy1r with gastrin-releasing peptide (Grp/Npy1r), neuropeptide FF (Npff/Npy1r), and cholecystokinin (Cck/Npy1r) in the superficial DH of mice, nonhuman primates, and humans. Next, we analyzed the functional significance of Grp/Npy1r, Npff/Npy1r, and Cck/Npy1r INs to neuropathic pain using a mouse model of peripheral nerve injury. We found that chemogenetic inhibition of Npff/Npy1r-INs did not change the behavioral signs of neuropathic pain. Further, inhibition of Y1-INs with an intrathecal Y1 agonist, [Leu31, Pro34]-NPY, reduced neuropathic hypersensitivity in mice with conditional deletion of Npy1r from CCK-INs and NPFF-INs but not from GRP-INs. We conclude that Grp/Npy1r-INs are conserved in higher order mammalian species and represent a promising and precise pharmacotherapeutic target for the treatment of neuropathic pain.


Neuralgia , Peripheral Nerve Injuries , Animals , Humans , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Peripheral Nerve Injuries/metabolism , In Situ Hybridization, Fluorescence , Neuralgia/metabolism , Interneurons/metabolism , Mammals
8.
Anesthesiology ; 139(6): 840-857, 2023 12 01.
Article En | MEDLINE | ID: mdl-37566700

BACKGROUND: Intersectional genetics have yielded tremendous advances in our understanding of molecularly identified subpopulations and circuits within the dorsal horn in neuropathic pain. The authors tested the hypothesis that spinal µ opioid receptor-expressing neurons (Oprm1-expressing neurons) contribute to behavioral hypersensitivity and neuronal sensitization in the spared nerve injury model in mice. METHODS: The authors coupled the use of Oprm1Cre transgenic reporter mice with whole cell patch clamp electrophysiology in lumbar spinal cord slices to evaluate the neuronal activity of Oprm1-expressing neurons in the spared nerve injury model of neuropathic pain. The authors used a chemogenetic approach to activate or inhibit Oprm1-expressing neurons, followed by the assessment of behavioral signs of neuropathic pain. RESULTS: The authors reveal that spared nerve injury yielded a robust neuroplasticity of Oprm1-expressing neurons. Spared nerve injury reduced Oprm1 gene expression in the dorsal horn as well as the responsiveness of Oprm1-expressing neurons to the selective µ agonist (D-Ala2, N-MePhe4, Gly-ol)-enkephalin (DAMGO). Spared nerve injury sensitized Oprm1-expressing neurons, as reflected by an increase in their intrinsic excitability (rheobase, sham 38.62 ± 25.87 pA [n = 29]; spared nerve injury, 18.33 ± 10.29 pA [n = 29], P = 0.0026) and spontaneous synaptic activity (spontaneous excitatory postsynaptic current frequency in delayed firing neurons: sham, 0.81 ± 0.67 Hz [n = 14]; spared nerve injury, 1.74 ± 1.68 Hz [n = 10], P = 0.0466), and light brush-induced coexpression of the immediate early gene product, Fos in laminae I to II (%Fos/tdTomato+: sham, 0.42 ± 0.57% [n = 3]; spared nerve injury, 28.26 ± 1.92% [n = 3], P = 0.0001). Chemogenetic activation of Oprm1-expressing neurons produced mechanical hypersensitivity in uninjured mice (saline, 2.91 ± 1.08 g [n = 6]; clozapine N-oxide, 0.65 ± 0.34 g [n = 6], P = 0.0006), while chemogenetic inhibition reduced behavioral signs of mechanical hypersensitivity (saline, 0.38 ± 0.37 g [n = 6]; clozapine N-oxide, 1.05 ± 0.42 g [n = 6], P = 0.0052) and cold hypersensitivity (saline, 6.89 ± 0.88 s [n = 5] vs. clozapine N-oxide, 2.31 ± 0.52 s [n = 5], P = 0.0017). CONCLUSIONS: The authors conclude that nerve injury sensitizes pronociceptive µ opioid receptor-expressing neurons in mouse dorsal horn. Nonopioid strategies to inhibit these interneurons might yield new treatments for neuropathic pain.


Neuralgia , Receptors, Opioid , Rats , Mice , Animals , Rats, Sprague-Dawley , Neuralgia/metabolism , Spinal Cord Dorsal Horn , Interneurons/metabolism , Mice, Transgenic
9.
PNAS Nexus ; 2(8): pgad261, 2023 Aug.
Article En | MEDLINE | ID: mdl-37649580

Tissue injury creates a delicate balance between latent pain sensitization (LS) and compensatory endogenous analgesia. Inhibitory G-protein-coupled receptor (GPCR) interactions that oppose LS, including µ-opioid receptor (MOR) or neuropeptide Y Y1 receptor (Y1R) activity, persist in the spinal cord dorsal horn (DH) for months, even after the resolution of normal pain thresholds. Here, we demonstrate that following recovery from surgical incision, a potent endogenous analgesic synergy between MOR and Y1R activity persists within DH interneurons to reduce the intensity and duration of latent postoperative hypersensitivity and ongoing pain. Failure of such endogenous GPCR signaling to maintain LS in remission may underlie the transition from acute to chronic pain states.

10.
Pain ; 164(12): 2696-2710, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37366599

ABSTRACT: Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. Here, we investigated whether peripheral sensory neurons and spinal cord hyperexcitability and pain behaviors were affected by the loss of NRP-1. Nrp-1 is expressed in both peptidergic and nonpeptidergic sensory neurons. A CRIPSR/Cas9 strategy targeting the second exon of nrp-1 gene was used to knockdown NRP-1. Neuropilin-1 editing in DRG neurons reduced VEGFA-mediated increases in CaV2.2 currents and sodium currents through NaV1.7. Neuropilin-1 editing had no impact on voltage-gated potassium channels. Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.


Neuralgia , Vascular Endothelial Growth Factor A , Animals , Female , Male , Rats , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , RNA, Guide, CRISPR-Cas Systems , Sensory Receptor Cells/metabolism , Sodium/metabolism , Vascular Endothelial Growth Factor A/metabolism
12.
Proc Natl Acad Sci U S A ; 119(46): e2204515119, 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36343228

Peripheral nerve injury sensitizes a complex network of spinal cord dorsal horn (DH) neurons to produce allodynia and neuropathic pain. The identification of a druggable target within this network has remained elusive, but a promising candidate is the neuropeptide Y (NPY) Y1 receptor-expressing interneuron (Y1-IN) population. We report that spared nerve injury (SNI) enhanced the excitability of Y1-INs and elicited allodynia (mechanical and cold hypersensitivity) and affective pain. Similarly, chemogenetic or optogenetic activation of Y1-INs in uninjured mice elicited behavioral signs of spontaneous, allodynic, and affective pain. SNI-induced allodynia was reduced by chemogenetic inhibition of Y1-INs, or intrathecal administration of a Y1-selective agonist. Conditional deletion of Npy1r in DH neurons, but not peripheral afferent neurons prevented the anti-hyperalgesic effects of the intrathecal Y1 agonist. We conclude that spinal Y1-INs are necessary and sufficient for the behavioral symptoms of neuropathic pain and represent a promising target for future pharmacotherapeutic development of Y1 agonists.


Hyperalgesia , Neuralgia , Mice , Animals , Hyperalgesia/drug therapy , Neuropeptide Y/genetics , Neuropeptide Y/pharmacology , Neuralgia/drug therapy , Neurons , Spinal Cord
13.
Prog Neurobiol ; 196: 101894, 2021 01.
Article En | MEDLINE | ID: mdl-32777329

An accelerating basic science literature is providing key insights into the mechanisms by which spinal neuropeptide Y (NPY) inhibits chronic pain. A key target of pain inhibition is the Gi-coupled neuropeptide Y1 receptor (Y1). Y1 is located in key sites of pain transmission, including the peptidergic subpopulation of primary afferent neurons and a dense subpopulation of small, excitatory, glutamatergic/somatostatinergic interneurons (Y1-INs) that are densely expressed in the dorsal horn, particularly in superficial lamina I-II. Selective ablation of spinal Y1-INs with an NPY-conjugated saporin neurotoxin attenuates the development of peripheral nerve injury-induced mechanical and cold hypersensitivity. Conversely, conditional knockdown of NPY expression or intrathecal administration of Y1 antagonists reinstates hypersensitivity in models of chronic latent pain sensitization. These and other results indicate that spinal NPY release and the consequent inhibition of pain facilitatory Y1-INs represent an important mechanism of endogenous analgesia. This mechanism can be mimicked with exogenous pharmacological approaches (e.g. intrathecal administration of Y1 agonists) to inhibit mechanical and thermal hypersensitivity and spinal neuron activity in rodent models of neuropathic, inflammatory, and postoperative pain. Pharmacological activation of Y1 also inhibits mechanical- and histamine-induced itch. These immunohistochemical, pharmacological, and cell type-directed lesioning data, in combination with recent transcriptomic findings, point to Y1-INs as a promising therapeutic target for the development of spinally directed NPY-Y1 agonists to treat both chronic pain and itch.


Chronic Pain , Interneurons , Neuropeptide Y , Pruritus , Receptors, Neuropeptide Y , Spinal Cord , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Interneurons/drug effects , Interneurons/metabolism , Neuropeptide Y/drug effects , Neuropeptide Y/metabolism , Pruritus/drug therapy , Pruritus/metabolism , Receptors, Neuropeptide Y/drug effects , Receptors, Neuropeptide Y/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism
14.
Sci Rep ; 10(1): 17611, 2020 10 19.
Article En | MEDLINE | ID: mdl-33077838

There is strong evidence for gut-taste bud interactions that influence taste function, behavior and feeding. However, the effect of gut inflammation on this axis is unknown despite reports of taste changes in gastrointestinal (GI) inflammatory conditions. Lipopolysaccharide (LPS), an inflammatory stimulus derived from gram-negative bacteria, is present in the normal GI tract and levels increase during high-fat feeding and gut infection and inflammation. Recordings from the chorda tympani nerve (CT), which transmits taste information from taste buds on the anterior tongue to the brain, previously revealed a transient decrease in sucrose responses in mice that ingest LPS during a single overnight period. Here we test the effect of acute or chronic, weekly LPS gavage on licking behavior and CT responses. Using brief-access testing, rats treated with acute LPS and mice receiving acute or chronic LPS decreased licking responses to sucrose and saccharin and to NaCl in mice. In long-term (23 h) tests chronic LPS also reduced licking responses to saccharin, sucrose, and NaCl in mice. Neurophysiological recordings from the CT supported behavioral changes, demonstrating reduced responses to sucrose, saccharin, acesulfame potassium, glucose and NaCl in acute and chronic LPS groups compared to controls. Chronic LPS significantly elevated neutrophils in the small intestine and colon, but LPS was not detected in serum and mice did not display sickness behavior or lose weight. These results indicate that sweet and salt taste sensitivity could be reduced even in asymptomatic or mild localized gut inflammatory conditions such as inflammatory bowel disease.


Behavior, Animal/drug effects , Chorda Tympani Nerve/drug effects , Inflammatory Bowel Diseases/physiopathology , Taste Perception/physiology , Taste/physiology , Animals , Behavior, Animal/physiology , Chorda Tympani Nerve/physiopathology , Disease Models, Animal , Female , Inflammatory Bowel Diseases/chemically induced , Lipopolysaccharides , Mice , Rats , Rats, Sprague-Dawley , Saccharin/administration & dosage , Sodium Chloride/administration & dosage , Sucrose/administration & dosage , Taste/drug effects , Taste Perception/drug effects
15.
Nat Biomed Eng ; 4(6): 649-661, 2020 06.
Article En | MEDLINE | ID: mdl-31873209

Contractile activity in the lymphatic vasculature is essential for maintaining fluid balance within organs and tissues. However, the mechanisms by which collecting lymphatics adapt to changes in fluid load and how these adaptations influence lymphatic contractile activity are unknown. Here we report a model of lymphatic injury based on the ligation of one of two parallel lymphatic vessels in the hind limb of sheep and the evaluation of structural and functional changes in the intact, remodelling lymphatic vessel over a 42-day period. We show that the remodelled lymphatic vessel displayed increasing intrinsic contractile frequency, force generation and vessel compliance, as well as decreasing flow-mediated contractile inhibition via the enzyme endothelial nitric oxide synthase. A computational model of a chain of lymphatic contractile segments incorporating these adaptations predicted increases in the flow-generation capacity of the remodelled vessel at the expense of normal mitochondrial function and elevated oxidative stress within the lymphatic muscle. Our findings may inform interventions for mitigating lymphatic muscle fatigue in patients with dysfunctional lymphatics.


Hindlimb/physiology , Lymphatic Vessels/anatomy & histology , Lymphatic Vessels/physiology , Animals , Disease Models, Animal , Female , Hindlimb/diagnostic imaging , Hindlimb/surgery , Lymphatic Vessels/diagnostic imaging , Lymphatic Vessels/surgery , Magnetic Resonance Imaging , Muscle Contraction/physiology , Proteomics , Sheep , Vascular Remodeling
17.
Sci Rep ; 9(1): 10405, 2019 07 18.
Article En | MEDLINE | ID: mdl-31320677

It has been suggested that many forms of secondary lymphedema in humans are driven by a progressive loss of lymphatic pump function after an initial risk-inducing event. However, the link between pump failure and disease progression has remained elusive due to experimental challenges in the clinical setting and a lack of adequate animal models. Using a novel surgical model of lymphatic injury, we track the adaptation and functional decline of the lymphatic network in response to surgery. This model mimics the histological hallmarks of the typical mouse tail lymphedema model while leaving an intact collecting vessel for analysis of functional changes during disease progression. Lymphatic function in the intact collecting vessel negatively correlated with swelling, while a loss of pumping pressure generation remained even after resolution of swelling. By using this model to study the role of obesity in lymphedema development, we show that obesity exacerbates acquired lymphatic pump failure following lymphatic injury, suggesting one mechanism through which obesity may worsen lymphedema. This lymphatic injury model will allow for future studies investigating the molecular mechanisms leading to lymphedema development.


Lymphatic Vessels/pathology , Lymphedema/pathology , Animals , Disease Models, Animal , Disease Progression , Endothelial Cells/pathology , Male , Mice , Mice, Inbred C57BL , Obesity/pathology
18.
Pain ; 160(8): 1754-1765, 2019 08.
Article En | MEDLINE | ID: mdl-31335645

Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. BIBO3304-evoked reinstatement was not observed in AC1 knockout mice and was prevented with intrathecal co-administration of a pharmacological blocker to the N-methyl-D-aspartate receptor (NMDAR), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), transient receptor potential cation channel A1 (TRPA1), channel V1 (TRPV1), or exchange protein activated by cAMP (Epac1 or Epac2). A PKA activator evoked both pain reinstatement and touch-evoked pERK expression in dorsal horn; the former was prevented with intrathecal co-administration of a TRPA1 or TRPV1 blocker. An Epac activator also evoked pain reinstatement and pERK expression. We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.


Arginine/analogs & derivatives , Chronic Pain/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Hyperalgesia/metabolism , Inflammation/metabolism , Receptors, Neuropeptide Y/antagonists & inhibitors , Animals , Arginine/pharmacology , Male , Mice , Pain Measurement , Pain Threshold/drug effects , Phosphorylation/drug effects
19.
Neuroscience ; 409: 111-119, 2019 06 15.
Article En | MEDLINE | ID: mdl-31047979

Benzodiazepines are one of the most commonly prescribed anxiolytic drugs in America, and between 2006 and 2015 prescription rates increased by an estimated 27.1%. Weight gain is a common side effect of these drugs and it may result from increased feeding caused by drug-enhanced food palatability. We investigated the role of specific GABAA receptor subtypes involved with benzodiazepine-induced food consumption through third ventricle injections of L-838,417, a partial agonist of GABAA α2, α3, and α5 subunits, and a full antagonist of the α1 receptor subunit. A microanalysis of the licking behavior of adult male rats to a sucrose solution was used to isolate drug effects on specific consummatory behaviors that include: hedonic taste evaluation, food approach behavior, and oromotor function. L-838,417 dose-dependently increased intake through increases in the motivation to approach the solution (shorter pause intervals between bouts of licking) and through enhancement of measures associated with hedonic taste evaluation. Oromotor depressant effects previously associated with broad-spectrum benzodiazepine receptor agonists were not observed. These results indicate that nuclei in proximity to the ventricles respond to GABAA α2, α3, or α5 activation to induce motivation to feed, absent of α1 receptor subunit activation. Furthermore, activation of the α1 subunit is not necessary for benzodiazepine hyperphagia and may instead contribute to the oromotor depressant and sedative properties of classic benzodiazepine agonists. Hypothalamic nuclei such as the paraventricular nucleus may be involved in the benzodiazepine-increased motivation to feed, while the parabrachial nucleus of the hindbrain could contribute to benzodiazepine-induced enhancement of taste palatability.


Eating/drug effects , Fluorobenzenes/pharmacology , GABA-A Receptor Agonists/pharmacology , Motivation/drug effects , Triazoles/pharmacology , Animals , Behavior, Animal/drug effects , Injections, Intraventricular , Male , Rats , Rats, Sprague-Dawley , Sucrose
20.
Sci Rep ; 9(1): 7248, 2019 05 10.
Article En | MEDLINE | ID: mdl-31076578

Endogenous neuropeptide Y (NPY) exerts long-lasting spinal inhibitory control of neuropathic pain, but its mechanism of action is complicated by the expression of its receptors at multiple sites in the dorsal horn: NPY Y1 receptors (Y1Rs) on post-synaptic neurons and both Y1Rs and Y2Rs at the central terminals of primary afferents. We found that Y1R-expressing spinal neurons contain multiple markers of excitatory but not inhibitory interneurons in the rat superficial dorsal horn. To test the relevance of this spinal population to the development and/or maintenance of acute and neuropathic pain, we selectively ablated Y1R-expressing interneurons with intrathecal administration of an NPY-conjugated saporin ribosomal neurotoxin that spares the central terminals of primary afferents. NPY-saporin decreased spinal Y1R immunoreactivity but did not change the primary afferent terminal markers isolectin B4 or calcitonin-gene-related peptide immunoreactivity. In the spared nerve injury (SNI) model of neuropathic pain, NPY-saporin decreased mechanical and cold hypersensitivity, but disrupted neither normal mechanical or thermal thresholds, motor coordination, nor locomotor activity. We conclude that Y1R-expressing excitatory dorsal horn interneurons facilitate neuropathic pain hypersensitivity. Furthermore, this neuronal population remains sensitive to intrathecal NPY after nerve injury. This neuroanatomical and behavioral characterization of Y1R-expressing excitatory interneurons provides compelling evidence for the development of spinally-directed Y1R agonists to reduce chronic neuropathic pain.


Interneurons/metabolism , Neuralgia/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Spinal Cord Dorsal Horn/metabolism , Animals , Axons/metabolism , Calcitonin Gene-Related Peptide/metabolism , Injections, Spinal/methods , Male , Neurons/metabolism , Pain Measurement/methods , Rats , Rats, Sprague-Dawley
...